Measuring surface roughness in turned parts

Traditionally, cylinder bores surfaces in cars were like the Himalayas lots of peaks and troughs. When piston rings went up and down, this would slice the tops of these off, so manufacturers made the bores tight to pre-empt this. Consequently, in the past motorists need to “run-in” their engine, limiting its speed for the first thousand miles or so. While the automotive world has moved on, this is an early example of how manufacturers recognised the value of surface characteristics. Here Mike John, technical director at The Sempre Group explains the importance of surface roughness and how to get the most out of this data.

Surface roughness often dictates how one part interacts with another. For example, if a shaft is rotating inside a bearing, a rough surface is undesirable because it causes excess friction. Meanwhile, a smooth and round surface ensures optimal performance by minimising resistance. If turned parts have the wrong surface characterisations, they could wear out, get bigger, smaller or rattle around.

In the automotive sector, surface texture is vital for anything that rotates in an engine. For example, camshafts will sit on a white metal bearing, a smooth object with a coating, and oil will produce a frictionless surface. However, if the surface roughness is poor, this will cause metal-to-metal contact. Consequently, the part will wear quicker, and irregularities in smoothness can produce nucleation sites where breaks and corrosion occur.

Measurement in action

On the shop floor, most engineers and manufacturers use roughness average (Ra) to measure change in process and understand micro- and macro-level geometric irregularities. The Ra will tell them if their tools are wearing out and producing different surface characteristics over time. Armed with this information, they can decide whether to make a tool change to remain within spec.

Ra won’t give the full picture, just an average. It assigns a value to the deviation away from a median height say, on an engine’s crankshaft but says nothing about the direction of surface performance. Knowing what parameters will provide the required functionality of the surface is the first step. For instance, manufacturers can use plateau honing to create a metallurgically stable microstructure on the wall of a cylinder bore. Then, they can characterise the peaks and troughs as a number using skewness (RSK) and determine whether this is positive or negative. Automotive manufacturers will often use three or four characteristics, including Rz and response surface methodology (RSM).

There are two methods of finish measurement skidded and skidless. Skidded stylus systems are ideal for simple measurement of high-frequency surface roughness, while skidless technologies are better for low-frequencies ripples, waviness and surface profiles. For example, the Jenoptik Waveline W5 features a skid situated by a stylus. The skid drags along the surface to remove the need for a straightness reference, removing added costs. The system can measure up to 28 parameters and includes a changeable probe and guide system for adaptability.

Data collection

Most engineering drawings specify the required dimensions and surface texture of turned parts. Following measurement, manufacturers can compare their system’s output against the initial spec to determine compliance. Despite its importance, most manufacturers don’t tend to gather their surface roughness data or store it effectively. It’s often treated as a tick-box exercise and, providing it’s within spec, many don’t give it a second look.

However, automated solutions can help manufacturers gather surface roughness data and export it easily. For example, using High QA Inspection Manager, they can scan entire drawings, or multiple pages, in one click and automatically extract surface roughness data. The process is fully automated, enabling total traceability.

The automotive industry has come a long way from tight cylinder bores, but surface roughness is still as important as it ever was. Knowing how to measure surface characteristics accurately and then capture this data is vital for ensuring part efficiency and functionality.

To find out more about Jenoptik optical shaft measurement systems, visit the Sempre website.

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

RECENT ARTICLES

Aeris to acquire IoT business from Ericsson

Posted on: December 8, 2022

Ericsson and Aeris Communications, a provider of Internet of Things (IoT) solutions based in San Jose, California, have signed an agreement for the transfer of Ericsson’s IoT Accelerator and Connected Vehicle Cloud businesses.

Read more

Telenor IoT passes milestone of 20mn SIM cards

Posted on: December 8, 2022

Telenor, the global IoT provider and telecom operator, has experienced rapid growth over the last years and ranks among the top 3 IoT operators in Europe and among the top IoT operators in the world. The positive development is due to an accelerated pace of new customers combined with a successful growth of existing customers’

Read more
FEATURED IoT STORIES

The IoT Adoption Boom – Everything You Need to Know

Posted on: September 28, 2022

In an age when we seem to go through technology boom after technology boom, it’s hard to imagine one sticking out. However, IoT adoption, or the Internet of Things adoption, is leading the charge to dominate the next decade’s discussion around business IT. Below, we’ll discuss the current boom, what’s driving it, where it’s going,

Read more

Talking Heads: The M2M Doctor is in the House

Posted on: December 26, 2013

Mobile health is M2M at its most rewarding. So says, Dan MacDuffie CEO of Wyless (left). And he should know, his managed services company has achieved 50% yearon- year growth recently and a growing portion of that is in mHealth and Wellness services. He’s certain we’re standing on the threshold of a new generation of health services that cut delivery costs, extend the reach

Read more

Talking Heads: mHealth gains ground as one-stop shops and M2M with ‘wired safety net’ bring efficient patient monitoring

Posted on: December 23, 2013

For years analysts have touted mobile healthcare as a huge opportunity for those offering machine-to-machine communication (M2M) services. Truth be told, the progress so far has been patchy, at best. So M2M Now asked Alexander Bufalino, SEVP Global Marketing at Telit, to describe the hurdles in the way of M2M mHealth, how they are now being overcome and what

Read more

Unlocking the total value of M2M

Posted on: December 19, 2013

Do you ever wonder why people and organisations invest in machine-to-machine communications (M2M) and the Internet of Things (IoT), asks Fred Yentz? Reasons may differ somewhat across industry segments but in most cases they fall in one or more of three categories: To make money, to save money or to be compliant. ILS Technology is squarely focused on helping

Read more

Paving the way to the Internet of Things

Posted on: December 17, 2013

Combining the ARM computing engine with location-awareness and wireless connectivity It’s set to be the Perfect Storm: The rapid growth of high-speed cellular networks and the introduction of IP version 6 which has enough IP addresses for every grain of sand on Earth. Add to this mix the proliferation of the ARM embedded computing architecture, now the de facto global

Read more

What’s the ‘real deal’ on the Internet of Things?

Posted on: December 16, 2013

The ‘Internet of Things’ buzzword appears to have picked up steam during the past several months as large players such as GE and Cisco have touted their stories on the growing number of connected devices. But, as Alex Brisbourne of KORE asks, how different, if at all, is the Internet of Things when compared with other connected device markets,

Read more

M2M Now Magazine December 2013 Edition

Posted on: December 5, 2013

M2M Now magazine explores the evolving opportunities and challenges facing CSPs across this sector. Our exclusive interviews pass on some key lessons learned by those who have taken the first steps in next gen Machine to Machine (M2M) services. In the latest issue: TALKING HEADS: Alexander Bufalino of Telit tells how one-stop shops and M2M with a ‘wired

Read more